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Abstract: Intrusions can interrupt network operations, steal critical data, and gain unauthorised access to network resources. 

Detecting and avoiding network breaches is critical to maintaining network security. Intrusion Detection Systems (IDS) and 

Intrusion Prevention Systems (IPS) monitor network traffic for unusual behavior and respond to threats. Ensemble learning 

techniques are used to identify cyber intrusions to improve detection accuracy and resilience. The KDD CUP 99 dataset contains 

a variety of variables collected from cyber network traffic, including duration, byte transfer rates, protocol kinds, and more. 

Pre-processing stages include categorical variable encoding and feature selection to prepare the dataset for modeling. As a 

result, Random Forest classifiers serve as foundation learners for bagging and stacking ensemble techniques. The performance 

of these ensemble models is evaluated using a variety of measures, including accuracy, precision, recall, and F1 score. 

Furthermore, visualization approaches such as confusion matrices help to analyze categorization performance across different 

cyber incursion types. This paper uses empirical assessment to demonstrate the usefulness of ensemble learning paradigms in 

cyber intrusion detection, highlighting their value in improving network security against various cyber threats. 
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1. Introduction 

 

In today's interconnected world's rapidly evolving digital landscape, the proliferation of technology has brought unprecedented 

convenience and efficiency. Advancements in technology have fostered a global network where people, organizations, and 

devices are interconnected. This interconnectedness transcends geographical boundaries, allowing instant communication, 

collaboration, and data exchange on a global scale. The world has become a closely woven web of digital interactions, enabling 

seamless connectivity and access to information across continents. The integration of technology into everyday life has brought 

about unparalleled convenience. Tasks that were once time-consuming and labour-intensive can now be accomplished with a 

few taps on a screen or clicking a button. Technology has streamlined and simplified numerous aspects of our lives, from online 

shopping and instant communication to remote work and digital entertainment. The adoption of technology has resulted in 

significant efficiency gains across various domains. Automation, data analytics, and smart technologies enhance productivity, 

reduce operational costs, and enable organizations to make informed decisions. Businesses can reach wider audiences, optimize 

processes, and deliver products and services more efficiently, contributing to economic growth and competitiveness. While the 
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proliferation of technology brings numerous benefits, it also presents challenges, particularly in cybersecurity [13]. As 

technology becomes more integral to daily life and critical infrastructure, the surface area for potential cyber threats expands. 

Addressing security concerns and implementing robust measures to protect against cyberattacks and unauthorized access 

becomes crucial [14]. 

 

Cybercriminals are also expanding their strategies; no industry is safe from attacks. As of 2023, ransomware attacks impacted 

approximately 72% of enterprises globally, according to Statista [15]. This was by far the highest recorded amount, rising over 

the preceding five years. Since 2018, an average of over 50% of all poll participants have said that ransomware has affected 

their companies. Big companies are targeted not only by cyber criminals but also by individuals, as it is easier to steal data from 

them than from a well-organized company. Phishing attacks and ransomware attacks mostly cause cyberattacks on individuals. 

Attackers often pose as reputable companies like banks, governments, or well-known internet services to send false emails, 

texts, or phone calls [16]. The intention is to deceive people into divulging private information, such as credit card numbers, 

login passwords, or personal information. Malicious software is used in ransomware attacks to encrypt data or lock the victim’s 

device, making it unusable [17]. After that, attackers demand money from the victim (often in cryptocurrency) to unlock the 

data or give them access to the device [18]. It is another common cyber-attack as people download cracked software instead of 

buying it, making it easier for criminals to steal data using ransomware. People should be cautious when revealing personal 

information online or answering unsolicited messages or requests [19]. They should also maintain vigilance and exercise basic 

cybersecurity hygiene. Using strong, one-of-a-kind passwords, staying up to speed on software updates, and being aware of 

frequent cyber threats can all help reduce the likelihood of becoming a cyberattack victim [20]. 

 

Machine learning is critical to cybersecurity in many areas. Machine learning algorithms are particularly good at anomaly 

detection [21]. They can detect changes in system logs, network traffic, or user behavior that could indicate a security breach. 

Machine learning also plays an important role in malware detection. It helps security systems and antivirus software detect and 

stop potential malware by classifying files. Also, machine learning that analyses email header, content, and sender information. 

Algorithms determine phishing attempts [22]. These algorithms can accurately detect and block suspicious emails using 

historical data from the phishing email. Also, machine learning is used in user behavior analytics to detect anomalies or 

suspicious activity within the enterprise network to help identify insider threats or deny access [23]. Moreover, machine learning 

helps address vulnerabilities by identifying various software and system vulnerabilities in the concept efforts. It supports 

security teams when prioritized. Machine learning is also useful in security information and event management (SIEM) design. 

SIEM systems can rapidly identify threats when used in conjunction with security events from multiple sources. Web traffic 

analysis uses machine learning techniques to analyse traffic patterns and identify abnormal activity, e.g., port scanning or denial 

of service ( DoS) attacks are carried out [24]. These algorithms help prevent cyberattacks by detecting suspicious traffic 

patterns. In general, machine learning applications in cybersecurity reinforce and force automated and intelligent ways of 

detecting, assessing, and reacting to cyber threats, strengthening enterprises' security posture against the ever-changing cyber 

threat landscape [25]. Our project proposes an intrusion detection system (IDS) using machine learning, especially supervised 

learning processes [26].  

 

The first step of the process involves collecting and pre-processing network traffic data, which involves partitioning the data 

into training and testing sets, dealing with missing values, and recording categorical variables [27]. Then, we engineer and 

select the most appropriate features to improve the model's performance. For this project, we used two ensemble learning 

techniques: a bagging classifier and a stacking classifier [28]. We used two base classifiers in our project. Random Forest 

classifier is used as a base classifier in the Bagging Classifier to create an ensemble model. Random Forest classifier as a base 

classifier, and Logistic Regression is the final estimator for the Stacking classifier [29]. The Bagging Classifier with Random 

Forests as the base classifier helps create an ensemble model that can better handle the complexities of intrusion detection. It 

involves training multiple instances of a base model (Random Forest model) on different subsets of the training data. The model 

then combines to make predictions, and averages or votes determine the final results. This approach helps improve overall 

model performance by reducing variance and increasing robustness, making it particularly useful in situations with complex 

decision boundaries or noisy data. The stacking classifier further improves the system's performance by combining the strengths 

of the two models [30]. The base models (random forests and logistic regression) each make individual predictions, which are 

then used as input features to the meta-model [31]. Then, the meta-model learns to combine these predictions to build the final 

decision. Stacking works well because it allows models to take advantage of the different strengths of different base models, 

which can improve performance compared to any one model [32].  

 

Once the model is trained and tested, it can be deployed in a manufacturing environment to monitor network traffic 

continuously. Ensemble learning techniques such as bagging and boosting can be used to combine multiple models to improve 

performance [33]. In addition, stacking can be used to train meta-models on the results of a multi-basis model, further increasing 

performance. Our approach uses machine learning techniques to build a robust IDS that effectively detects and responds to 

cyber threats, enhancing network security [34]. By leveraging IDS with machine learning techniques, this project aims to 

enhance network security by developing a method to detect and respond to cyber threats [35]. Using the power of machine 
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learning, this IDS can adapt to evolving threats, protect against unauthorized access and data breaches, and ultimately enhance 

the security posture of individuals and organizations in the digital age [36]. 

 

2. Objective 

 

• The goal of developing an intrusion detection system (IDS) using machine learning is to detect and respond to cyber 

threats. This includes collecting and pre-processing network traffic data, selecting its technology components, training 

machine learning models, and evaluating their performance. 

• The project aims to build a robust IDS that can accurately distinguish between normal and attacker network traffic, 

enhancing network security through a proactive approach to identify and mitigate cyber threats. 

• Implementing an IDS at the manufacturing site will enable real-time detection of installations, enabling immediate 

response and mitigating cyber threats. Furthermore, the system's adaptability to new threats and its large enough size 

to handle a lot of web traffic will ensure effective protection against incoming attack patterns. 

 

3. Literature Survey 

 

Wang et al. [1] discussed the use of an early warning model in power systems to identify Cyber-Physical Cascading Attacks 

(CFCA). It gathers information from communication and control networks using a bypass mirror mode. The model is tested in 

a simulated environment with a power plant, smart substation, and IEEE 39-bus system. 

 

Sommer and Paxson [2] discuss the challenges of applying machine learning in practical settings as you talk about how these 

approaches are utilized for network intrusion detection. They provide a framework for incorporating machine learning into 

intrusion detection systems and emphasize the importance of adapting machine learning models to account for the dynamic 

nature of network traffic. 

 

Pu et al. [3] discuss utilizing the One-Class Support Vector Machine and Sub-Space Clustering-Based Hybrid Unsupervised 

Clustering-Based Anomaly Detection Method for efficient cyberattack detection. The approach performs better than current 

methods, as experimental findings on the NSL-KDD network attacks dataset show. 

 

Al-Abassi and Karimipour [4] present an ensemble-based deep learning model for detecting industrial control systems (ICS) 

cyberattacks. Creating new balanced representations corrects the imbalance found in ICS datasets. In actual ICS datasets, the 

model performs better than conventional classifiers with higher F1 scores and accuracy. 

 

Tufan et al. [5] discussed using machine learning models to identify probing assaults on a network used by a university and 

implement improved cybersecurity. Unlike popular public datasets, the models were trained using actual data from the 

institutional network, providing a more realistic approach. They used feature visualization methods such as saliency maps and 

t-SNE to understand the behavior of the data. 

 

Loukas et al. [6] discuss a deep learning-based cloud-based cyber-physical intrusion detection system for cars. It emphasizes 

how improving intrusion detection skills through computing offloading might be beneficial. The authors illustrate the efficiency 

of deep learning in ongoing vehicle intrusion detection. 

 

Alhakami et al. [7] discuss anomaly-based intrusion detection systems’ shortcomings and suggest a nonparametric Bayesian 

method for enhancement. The approach incorporates feature selection to improve detection accuracy and lower false alarms. 

The paper aims to discuss the complexity of cyber threats in the context of smart cities. The model provides a more reliable 

intrusion detection solution by combining feature selection with Bayesian inference. This research facilitated the advancement 

of cybersecurity protocols in smart city applications. 

 

Vinayakumar et al. [8] discuss the application of deep learning in developing an Intelligent Intrusion Detection System (IDS). 

It uses machine-learning approaches to address IDS development issues. The deep learning method improves cyberattack 

detection efficiency and accuracy. The study's results emphasize how critical it is to comprehend the phases of attacker activity. 

 

Siddiqi and Pak [9] discuss an optimized framework for network intrusion detection based on image processing to enhance 

network security. The approach reduces features and turns non-image data into images for efficient anomaly detection by fusing 

augmented feature selection with image enhancement and transformation. 

 

Tummala and Inapakurthi [10] present a two-stage Kalman Filter for Automatic Generation Control Systems Cyber-attack 

Detection. The filter is intended to improve cyber-security by identifying and reducing different types of cyber-attacks, 
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including DoS, FDI, DRA, scaling, and ramp attacks. Benchmark power system model simulation results show how well the 

OTS-KF estimates cyberattacks and boosts system resilience. This paper addresses the increasing challenges cyber threats pose 

in modern power systems undergoing significant changes due to renewable energy integration. 

 

Chen et al. [11] discuss a modified Q-learning approach for cyber-physical systems (CPS) to address unequal cost challenges 

in defense strategy selection. This paper aims to improve efficiency and reduce costs compared to traditional approaches that 

assume equal costs for misclassification errors. 

 

Raghunath et al. [12] discuss the development of an XGBoost Regression Classifier (XRC) model for cyber-attack detection 

and classification using Inception V4. The study showcases the effectiveness of machine learning techniques in improving 

cyber-attack detection accuracy. 

 

4. Proposed Methodology 

 

4.1. Ensemble Techniques 

 

Ensemble approaches are a machine learning strategy combining different models to increase system performance. The premise 

underlying ensemble approaches is based on the assumption that integrating numerous models may compensate for individual 

model deficiencies while maximizing their strengths. It uses the notion of “wisdom of the crowd,” which states that collecting 

various viewpoints frequently results in better conclusions than depending on a single source. Homogeneous Ensembles are 

made up of numerous instances of the same basic model. Techniques like bagging and boosting come within this group. 

Heterogeneous ensembles integrate basic models, including decision trees, neural networks, and support vector machines. One 

important component of ensemble learning is the variety of the base models. Diversity guarantees that the models make diverse 

errors so that their strengths and weaknesses complement one another when coupled. [37] Diversity may be produced in various 

ways, including employing alternative methods, subsets of the training data, or feature representations [38]. Ensemble 

approaches aggregate basic model predictions using various aggregation strategies, including averaging, voting, and weighted 

averaging [39].  

 

The aggregation technique chosen is determined by the type of the issue (classification, regression, etc.) and the base model 

parameters. Bagging is the process of training numerous instances of the same learning algorithm on different subsets of the 

training data (sampled with replacement) and then combining their predictions, frequently done by averaging or voting [40]. It 

reduces overfitting by decreasing the variance of the model. Random forests are a decision tree-based ensemble approach in 

which numerous trees are generated on various subsets of data and then blended via averaging or voting [41]. They provide 

randomization to the tree-building process to improve variety and avoid overfitting. Stacking entails developing a meta-model 

that learns to aggregate the predictions of numerous base models [42]. Unlike basic aggregation approaches, stacking 

determines the best way to aggregate predictions based on their performance on a validation set [43]. Ensemble approaches are 

frequently employed in many disciplines because they result in more resilient and accurate models than individual ones [44].  

 

However, they add computational complexity and may necessitate more comprehensive hyperparameter tweaking. Ensemble 

approaches are more resistant to noise and outliers in data [45]. Because they consider several models, they are less susceptible 

to random fluctuations or inaccuracies in individual forecasts. Ensemble approaches can assist in preventing overfitting, 

particularly in complicated models [46]. Ensemble approaches can improve the generalization of new data by pooling 

predictions from several models and avoiding memorizing noise in training data. Ensemble approaches are often more stable 

than individual models [47]. They are less sensitive to tiny changes in the training data or model parameters, allowing for more 

consistent results across datasets. Ensemble techniques are capable of properly handling complicated data linkages and patterns. 

Ensemble approaches combine several models and may capture various properties and interactions, making them suited for 

jobs involving high-dimensional or nonlinear data [48]. Many ensemble methods are easy to install and need little adjustment. 

Techniques such as bagging and boosting have well-established algorithms and are supported by major machine-learning 

libraries, making them available to practitioners [49]. The machine learning model utilised in this paper is a hybrid of ensemble 

learning approaches, especially Bagging and Stacking, with Random Forest and Logistic Regression serving as basis classifiers 

[50].     

 

4.2. Bagging Classifier 

 

“Bagging” stands for Bootstrap Aggregating. It is an ensemble meta-algorithm that boosts the stability and accuracy of machine 

learning algorithms. It operates by randomly choosing and replacing sections of the original dataset. Then, a basic classifier is 

applied to each subgroup [51]. In this paper, the underlying classifier for bagging is a Random Forest Classifier, a decision tree-

based ensemble learning approach. The Bagging process involves the following steps:  
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• Base Classifier Selection: First, a base classifier is chosen. In this situation, the basis classifier is 

RandomForestClassifier. 

• Bagging Classifier Initialization: The Bagging Classifier is created using the basis classifier of your choice. In addition, 

parameters such as the number of estimators and the random state are defined. The number of estimators indicates the 

number of basic classifiers (Random Forests) to train. 

• Training the Bagging Classifier: After initialization, the BaggingClassifier is trained using the training data (X_train, 

Y_train). During training, numerous subsets of training data are generated using random sampling with replacement 

(bootstrap sampling). Each subset trains an individual Random Forest classifier [52]. 

• Prediction: Following training, the BaggingClassifier generates predictions on test data (X_test). Each base classifier 

(Random Forest) predicts for each test data instance. A majority vote of all base classifier predictions then selects the 

final prediction [53]. 

• Finally, the performance of the BaggingClassifier is assessed using metrics such as accuracy, classification report, and 

confusion matrix. These metrics explain how successfully the BaggingClassifier classifies instances into distinct attack 

types [54]. 

• Overall, the Bagging process in this method consists of training several Random Forest classifiers on bootstrap samples 

of training data and aggregating their predictions to enhance overall classification performance. 

 

4.3. Stacking Classifier 

 

Stacking, or Stacked Generalisation, is another ensemble learning approach. Instead of simple majority voting, like Bagging, 

Stacking employs a meta-learner to determine best how to combine the basic learners' predictions. In this paper, the basic 

classifiers used for stacking are Random Forest and maybe more, as noted by the remark, “Add more base classifiers as needed”. 

The last meta-estimator for Stacking is Logistic Regression. The Stacking process involves the following steps:  

 

• Base Classifier Selection: First, a set of base classifiers is established. In this paper, RandomForestClassifier is used 

as the basis classifier. You may add more base classifiers to this list. 

• Stacking Classifier Initialization: The StackingClassifier is created using the list of basic classifiers as ‘estimators’ 

and a final estimator. The final estimator is another classifier that uses the basic classifiers’ outputs as input to create 

a final prediction. In this paper, Logistic Regression is utilised as the final estimator. 

• Training the Stacking Classifier: After initialization, the StackingClassifier is trained using training data (X_train and 

Y_train). Each base classifier in the 'estimators' list is trained using the training data during training. 

• Getting basic Classifier Predictions: After training the basic classifiers, predictions are created on the validation data 

(X_test) using each base classifier. 

• Final Prediction: The basic classifier's predictions are utilised as features for the final estimator (Logistic Regression). 

The final estimator uses these predictions as input to produce a final prediction. 

• Finally, the performance of the StackingClassifier is assessed using measures such as accuracy, classification report, 

and confusion matrix. These metrics explain how successfully the StackingClassifier classifies instances into various 

attack types [55]. 

• To summarise, the stacking method in this project consists of training several base classifiers, utilizing their predictions 

as features, and then training a final estimator to generate a final prediction [56]. This approach seeks to integrate the 

capabilities of several base classifiers and enhance overall classification performance [57]. 

• Bagging and stacking methods are used for classification problems. After training both classifiers, the algorithm 

assesses their performance using accuracy, precision, recall, and F1-score measures. It also displays both models' 

confusion matrices and classification reports, comparing their performance across various attack types [58]. In 

addition, the algorithm checks the accuracy of two classifiers to see which performs better [59]. 

 

4.4. Algorithm: 

 

Data Pre-processing: 

• Load the dataset. 

• Define column names. 

• Map attack types to their corresponding categories. 

• Visualize the distribution of attack types and protocol types. 

• Handle missing values and drop irrelevant columns. 
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• Encode categorical variables into numerical representations. 

 

Model Training with Bagging Classifier: 

• Split the dataset into training and testing sets. 

• Initialize a Bagging Classifier with a Random Forest Classifier as the base estimator. 

• Train the Bagging Classifier on the training data. 

• Make predictions on the testing data. 

• Evaluate the performance of the Bagging Classifier using metrics such as accuracy, classification report, and 

confusion matrix. 

 

Model Training with Stacking Classifier: 

• Split the dataset into training and testing sets. 

• Define a list of base classifiers (Random Forest Classifier). 

• Initialize a Stacking Classifier with the list of base classifiers and a final estimator (Logistic Regression). 

• Train the Stacking Classifier on the training data. 

• Make predictions on the testing data. 

• Evaluate the performance of the Stacking Classifier using metrics such as accuracy, classification report, and 

confusion matrix. 

 

Visualize Feature Relationships: 

• Plot a pair plot of selected features to visualize their relationships. 

 

Performance Comparison: 

• Compare the performance of Bagging and Stacking classifiers using metrics such as precision, recall, F1-

score, and accuracy. 

• Visualize the performance metrics using bar graphs. 

 

Summary: 

• Provide a summary of the performance comparison between Bagging and Stacking classifiers. 

 

4.5. Support Vector Machine 

 

Support Vector Machine is a supervised machine learning system that performs classification and regression problems. SVM 

is successful in high-dimensional spaces and can handle linear and nonlinear datasets. SVM works by dividing classes using a 

decision boundary. The method of separation is determined by the kernel function used. After preparing the data and selecting 

the kernel, the SVM model is trained using labeled training data. During training, the algorithm determines the parameters 

(weights and bias) of the decision boundary that optimally divides the classes in the feature set [60]. Hyperparameter selection 

can affect SVM performance in areas such as the regularisation parameter, kernel type, and kernel-specific parameters. 

Choosing proper settings for these parameters is critical to getting acceptable performance, and it frequently necessitates 

thorough tweaking using techniques like grid search or cross-validation [61]. Ensemble methods may handle unbalanced 

datasets better than SVMs by assigning appropriate weights to distinct classes or employing strategies such as resampling 

during training [62]. SVM may be computationally costly, particularly for big datasets, because of its quadratic or cubic time 

complexity to sample count [63]. Ensemble approaches, while computationally costly, maybe more scalable with bigger 

datasets owing to parallelization. 

 

4.6. Execution 

 

Bagging Classifier: 

 

•  Initializes a base classifier (RandomForestClassifier) and a Bagging Classifier using this base classifier with ten 

estimators. 

• The Bagging Classifier is trained on the training data (X_train, Y_train) using the fit() method. 

• Predictions are made on the test data (X_test) using the trained Bagging Classifier. 

• Accuracy and classification reports are computed for the Bagging Classifier using accuracy_score and 

classification_report. 

 

Stacking Classifier: 

215



 

Vol. 1, No. 4, 2023  

 

• Like Bagging, Stacking initializes multiple base classifiers (RandomForestClassifier) and defines a Stacking Classifier 

using these base classifiers with a final estimator (LogisticRegression). 

• The Stacking Classifier is trained on the training data (X_train, Y_train) using the fit() method. 

• Predictions are made on the test data (X_test) using the trained Stacking Classifier. 

• Accuracy and classification reports are computed for the Stacking Classifier using accuracy_score and 

classification_report. 

 

4.7. Architecture Diagram 

 

Figure 1 depicts the sequence of activities and steps for network intrusion detection using ensemble techniques. The dataset 

utilized in this study is known as the "KDD Cup 1999 Data," a benchmark dataset extensively used to evaluate intrusion 

detection systems. It simulates a computer network environment where several assaults are introduced into typical network 

traffic. The dataset has a predefined set of features that describe network connections [64]. These capabilities record different 

features of network traffic behavior, including duration, protocol type, service, flag, bytes transported, and more [65]. The heat 

map is used for feature selection, and certain features are dropped during pre-processing based on correlation analysis.  

 

 
 

Figure 1: Architecture Diagram for Ensemble Techniques 

 

Ensemble Techniques such as the bagging classifier and stacking classifier are used. A RandomForestClassifier is chosen as 

the base estimator for the bagging classifier. Multiple base classifiers (RandomForestClassifier) are defined as a list of tuples. 

These base classifiers are then used to train a stacking classifier with a final estimator (LogisticRegression). Overall, the paper's 

architecture follows a structured approach, starting from data pre-processing and feature engineering, followed by model 

training, evaluation, and visualization of results to gain insights into cyber intrusion detection. 

 

5. Implementation 

 

5.1. Data and Pre-processing 

 

The data is imported from a CSV file into a Pandas DataFrame, and each column is properly labeled with specified column 

names. Next, basic data inspection is performed to understand the dataset's structure and distribution, which includes checking 

for missing values and analyzing the distribution of target classes. Data cleaning methods are then applied, such as deleting 

columns with missing values and preserving only columns with more than one unique value to assure data integrity. 

Furthermore, categorical variables are handled by translating them into numerical representations. Feature selection is used to 

remove strongly correlated features, hence reducing redundancy and improving model performance. Finally, the data is 

separated into input features and target variables, with the input features scaled using Min-Max scaling to guarantee that all 

characteristics contribute equally to model training. Overall, these pretreatment stages are critical for ensuring that the dataset 

is in a proper format for model training. This improves the efficacy and accuracy of the machine learning models used on the 

data. 
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5.2. Data Visualization 

 

 

 
 

Figure 2: Pie Chart 

 

Figure 2 depicts the distribution of attack types within the dataset. It begins by determining the number of attack types in the 

data. Each slice of the pie represents a distinct attack type, and its size indicates the fraction of that kind in the dataset. The 

chart's percentages also give a quantitative depiction of the relative frequency of each assault type. The chart is supplemented 

with stylistic features such as colour schemes and a starting angle for the first wedge. A legend is added to make the chart more 

interesting, and the attack-type labels provide context for each slice. For clarity, the legend is placed to the left of the chart. 

Overall, the pie chart provides a visual description of the distribution of attack types, making it easier to understand the dataset's 

composition. 

 
 

Figure 3: Bar Chart of Distribution of Protocol Types 

 

Figure 3 depicts the distribution of protocol types. Initially, the script obtains the dataset's 'protocol_type' column and calculates 

the number of occurrences for each unique protocol type. This function is set with kind='bar' to generate a bar chart. The x-axis 

displays the numerous protocol types, while the y-axis shows the count of occurrences for each protocol. This visualization 

assists in determining the prevalence of various protocols within the dataset, provides insights into network traffic patterns, and 

allows for a quick assessment of protocol usage frequencies. 
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Figure 4: Bar Chart of Distribution of Target Types 

 

Using a bar chart, figure 4 depicts the distribution of the target variable, which is likely to reflect distinct groups or categories 

in the dataset. Initially, the script retrieves the 'target' column from the dataset and computes the frequency of occurrence for 

each target value. A bar chart is created using the target counts as the data input. The function's kind='bar' parameter specifies 

the production of a bar chart. As a result, the x-axis displays the various target categories, while the y-axis shows the number 

of occurrences for each category. By producing this visualization, the script provides insight into the distribution of classes 

within the dataset, which aids in evaluating the balance or imbalance between various goal categories. 

 

 
 

Figure 5: Heat Map 

 

Figure 5 is created to visualize the dataset's correlation matrix. This heatmap provides a complete picture of the correlations 

between various pairs of characteristics by showing the correlation coefficients as colors. 

218



Vol. 1, No. 4, 2023  

 

 

 
 

Figure 6: Pair Plot 

 

Calculating Correlation Matrix: The script generates the correlation matrix using the Pandas DataFrame's corr() function, which 

computes the pairwise correlation coefficients between all numerical columns in the dataset. 

 

Creating the Heatmap: 

• The correlation matrix provides input data for the heatmap. 

•  The heatmap function automatically converts the correlation coefficients to a color scale, with different colours 

denoting varying correlation strength. 

•  Warmer colours (e.g., red) often imply more positive correlations, whereas cooler colours (e.g., blue) represent 

higher negative correlations. 

 

 Interpretation: 

• The generated heatmap visualizes the dataset's correlation structure.  

• Darker tones indicate higher relationships, whereas lighter shades suggest weaker or absent associations.  

• Examining the heatmap may determine whether pairings of attributes are favorable, adverse, or not connected.  
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This visualization helps with feature selection, multicollinearity detection, and comprehending possible variable interactions, 

which are important for model construction and interpretation in machine learning tasks. 

 

Figure 6 is created to visualize the associations between selected feature pairs from the dataset, also known as a scatterplot 

matrix. Initially, a selection of characteristics is selected for visualisation, including 'duration,' 'src_bytes', 'dst_bytes', 

'count','srv_count','serror_rate', and'rerror_rate'.This function creates a grid of scatterplots, with each feature plotted against 

every other feature. In addition, the grid's diagonal depicts each feature's distribution, commonly represented by kernel density 

estimation (KDE) curves or histogram. Examining these graphs provides insights into the dataset's relationships, trends, and 

probable outliers. Pair plots are useful tools for exploratory data analysis, helping to identify correlations between variables 

and directing further data pretreatment and modelling processes in machine learning workflows. 

 

5.3. Training 

 

Two ensemble classifiers, Stacking Classifier and Bagging Classifier, are trained for a network intrusion detection job. 

 

Data Splitting: This example separates the dataset into features (X) and the target variable (Y), the 'Attack Type' column. The 

dataset is then split into training and testing sets using sci-kit-learn's train_test_split() method. This allows us to evaluate the 

trained models' performance on previously unknown data. 

 

Bagging Classifier Training: A basic classifier (RandomForestClassifier) is selected. The Bagging Classifier is created using 

scikit-learn's BaggingClassifier() method, which combines many basic classifiers. The Bagging Classifier is trained on the 

training data via the fit() technique. 

 

Stacking Classifier Training: Training the Stacking Classifier involves defining many base classifiers in a list.  

The Stacking Classifier is created using sci-kit-learn's Stacking Classifier() method, which mixes predictions from numerous 

basic classifiers. The Stacking Classifier is trained on the training data via the fit() function.  

  

5.4. Model Evaluation 

 

After both classifiers have been trained, performance measures such as accuracy, precision, recall, and F1-score are calculated 

to evaluate the classifiers' performance. 

 

Visualization of Results: Confusion matrices and classification reports are visualised with Seaborn and matplotlib to offer a 

complete picture of the classifiers' performance on the test data. Heat maps of the confusion matrices may be used to show the 

distribution of accurate and wrong predictions across classes. Bar graphs or pie charts can compare the two classifiers' 

performance measures (e.g., accuracy, precision, recall, F1-score). 

 

Comparison of Performance Metrics: Bar graphs or pie charts can compare the two classifiers' performance measures (e.g., 

accuracy, precision, recall, F1-score). This enables a visual comparison of the classifiers' performance categorizing various 

network intrusion assaults. 

 

6. Result and Discussion 

 

The proposed model was run and evaluated on Windows 11 with Ryzen 7 5800 X, 32GB RAM, and RTX 3060ti GPU and re-

evaluated on the Google Colab. The dataset has been trained and tested using the Ensemble Techniques. The dataset is split 

into 80% and 20% for training and testing. Metrics like precision, recall, F1-score, and accuracy are used to evaluate the 

effectiveness of the  Ensemble Techniques. The same dataset was trained with the SVM model, and the same metrics as the 

Ensemble Techniques were evaluated for the SVM model. The results are: 

 

Table 1: Comparison of SVM and Ensemble Techniques 

 

Model Accuracy Average_Precision Average_Recall Average_F1-score 

SVM 99.87% 93% 89% 91% 

Bagging Classifier 99.96% 98% 94% 96% 

Stacking Classifier 99.97% 97% 94% 96% 

 

Table 1 clearly illustrates the difference in metrics for the Ensemble Techniques and the SVM model. The same dataset was 

trained, but there is a difference between the metrics, which clearly shows that the Ensemble Technique is best suited and makes 

accurate predictions for the loaded dataset. 

220



Vol. 1, No. 4, 2023  

 

 
 

Figure 7: Confusion Matrix of Bagging Classifier 

 

Figure 7 shows how well it predicts distinct classes (in this example, different sorts of network intrusion assaults) compared to 

the test dataset's actual labels. It consists of a grid with rows representing the actual classes and columns representing anticipated 

classes. The bagging classifier's confusion matrix visualizes how well the classifier performed in classifying network intrusion 

attacks into different categories, such as 'dos' (Denial of Service), 'normal' (No Attack), 'probe' (Probing), 'r2l' (Unauthorised 

Access from Remote to Local), and 'u2r' (Unauthorised Access to Root). The confusion matrix entries indicate the classifier's 

true positive (TP), false positive (FP), true negative (TN), and false negative (FN) predictions for each class. 

 

• True Positive (TP): Instances where the classifier correctly predicted a certain attack type when it was present. 

• False Positive (FP): Instances where the classifier incorrectly predicted a certain attack type when it was not present. 

• True Negative (TN): Instances where the classifier correctly predicted the absence of a certain attack type. 

• False Negative (FN): Instances where the classifier incorrectly predicted the absence of a certain attack type when it 

was present.  

 

One may evaluate the classifier's accuracy, precision, recall, and other classification metrics by reviewing the confusion matrix 

values. It aids in determining which attack types the classifier frequently misclassifies and provides insights into model 

development opportunities. Furthermore, visualizing the confusion matrix provides rapid and straightforward insight into the 

classifier's performance across classes. 

 

                    
 

Figure 8: Confusion Matrix of Stacking Classifier 
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Figure 8 shows how well it predicts different classes (in this case, different types of network intrusion attacks) compared to the 

actual labels in the test dataset. It is a grid, similar to the confusion matrix of the bagging classifier, with rows representing the 

actual classes and columns representing the anticipated classes. The stacking classifier's confusion matrix visualises how well 

the classifier performed in classifying network intrusion attacks into different categories, such as 'dos' (Denial of Service), 

'normal' (No Attack), 'probe' (Probing), 'r2l' (Unauthorised Access from Remote to Local), and 'u2r' (Unauthorised Access to 

Root). Similarly, the confusion matrix entries indicate the number of true positive (TP), false positive (FP), true negative (TN), 

and false negative (FN) predictions given by the stacking classifier for each class. Analyzing the numbers in the confusion 

matrix allows one to assess the classifier's accuracy, precision, recall, and other classification metrics. It assists in determining 

which attack types the stacking classifier frequently misclassifies and gives insights into model development opportunities. 

Furthermore, visualising the confusion matrix enables a rapid and intuitive assessment of the classifier's performance across 

multiple classes, which aids decision-making and model modification. 

 

 
 

Figure 9: ROC curve for Bagging Classifier 

 

Figure 9 is a graphical depiction of the classifier's performance at various thresholds for binary classification issues. However, 

because the problem requires multi-class classification, the ROC curve may not be immediately relevant. In binary 

classification, the ROC curve compares the true positive rate (sensitivity) against the false positive rate (1-specificity) at 

different thresholds. Each point on the curve indicates a sensitivity-specificity pair assigned to a specific threshold. The area 

under the ROC curve (AUC-ROC) measures the classifier's overall performance, with a greater AUC suggesting better 

discrimination between positive and negative classifications. In multi-class classification, alternative evaluation measures like 

accuracy, recall, F1-score, and confusion matrices are commonly used to analyze the classifier's performance across several 

classes. These metrics give information about the classifier's ability to accurately categorise examples within each class and 

highlight areas for development. As a result, while the ROC curve is a useful tool for assessing binary classifiers, it may not be 

easy to apply to multi-class classification issues. Instead, various multi-class classification-specific evaluation metrics and 

methodologies are more suited to analyzing the bagging classifiers’s performance. 

 

 
 

Figure 10: ROC curve for Bagging Classifier 
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Figure 10 is a graphical depiction of the classifier's performance at various thresholds for binary classification issues because 

producing a ROC curve for a multi-class classifier such as the stacking classifier may not be simple. One technique of 

visualising the performance of a multi-class classifier, such as stacking, is to employ a One-vs-Rest strategy. Here's a step-by-

step approach to visualize the ROC curve for the stacking classifier using the OvR strategy: 

 

Binary Transformation: Using the OvR technique, break down the multi-class issue into several binary classification 

subproblems. Consider each class as positive and all other classes as negative. 

 

Predict Probabilities: Using the stacking classifier, forecast the probability of being in the positive class for each binary 

classification subproblem.  

 

Compute ROC Curve: Compute the ROC curve for each binary classification subproblem using the predicted probabilities. 

Plot ROC Curves: Plot each ROC curve on the same plot to see how the stacking classifier performs across classes. 

 

 
 

Figure 11: Metrics Evaluation of Bagging Classifier 

 

In a multi-class classification task, Figure 11 usually comprises bar graphs that indicate several evaluation metrics, including 

precision, recall, F1 score, and accuracy for each class. 

 

Precision refers to the fraction of real positive predictions among all instances projected as positive. It is the ratio of genuine 

positives to the sum of true positives plus false positives. In a multi-class problem, accuracy is calculated separately for each 

class. 

Recall: Recall, also known as sensitivity or true positive rate, calculates the proportion of genuine positive forecasts among all 

real positive cases. It is the ratio of genuine positives to the sum of true positives plus false negatives. In a multi-class situation, 

recall is calculated separately for each class, much like accuracy. 

 

F1 Score: The F1 score is the harmonic mean of accuracy and recall, resulting in a balance of the two measures. It is computed 

as 2 × (precision * recall) divided by (precision + recall). In a multi-class context, the F1 score is calculated independently for 

each class, just as accuracy and recall. 

 

Accuracy: Accuracy assesses the overall accuracy of the classifier's predictions across all classes. It is determined as the 

proportion of properly categorized examples to the total number of instances. 

 

The metrics evaluation graph for the bagging classifier depicts each evaluation metric as a bar graph, with each bar representing 

a distinct class in the multi-class issue. The x-axis normally depicts the various classes, and the y-axis indicates the value of the 

evaluation measure. Each bar's height represents the metric's value for the related class. This graph presents a full summary of 

the bagging classifier's performance across many classes, allowing for easy comparison of each class's precision, recall, F1 

score, and accuracy. It aids in determining which classes the classifier excels at and which require more work. 
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Figure 12: Metrics Evaluation of Stacking Classifier 

 

Figure 12 depicts important evaluation metrics such as precision, recall, F1 score, and accuracy over several classes in a multi-

class classification situation. Each measure is depicted as a bar graph, with each bar representing a distinct class in the 

classification task. The x-axis shows the various classes, while the y-axis reflects the values of the assessment metrics. Higher 

precision, recall, and F1 scores imply superior performance, but accuracy values close to 1.0 suggest correct classification 

across all classes. Examining the heights of the bars for each statistic allows one to analyze the classifier's performance for each 

class rapidly. Comparing metrics across classes sheds light on the classifier's strengths and limitations, indicating where 

performance may be poor and regions where it excels. This visualization helps you see the classifier's overall performance and 

ability to categorise cases across classes accurately. It also aids in detecting any imbalances or biases in the classifier's 

predictions across classes, allowing for targeted modifications that increase overall classification accuracy and efficiency. 

 

7. Conclusion 

 

Using random forest classifiers and stacking classifiers for intrusion detection has shown promising results in detecting and 

classifying network intrusions, including cyber-attacks. The Random forest classifier showed high accuracy in detecting 

fraudulent transactions. We were able to develop an effective IDS capable of detecting network attacks. We used ensemble 

techniques such as bagging and stacking classifiers. After evaluation with accuracy, average precision, average F1-score, and 

average recall. The bagging classifier got results (accuracy=99.96%, average precision=98%, average f1-score=96% and 

average recall=94% ) and the stacking classifier got results (accuracy=99.97%,average precision=97%, average f1-score=96% 

and average recall=94% ).The use of ensemble techniques proved to improve the overall performance of the IDS. Further 

research and development in machine learning and intrusion detection systems will continue to advance the industry, providing 

better security solutions to protect communications from cyber-attacks and threats. 
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